【2015年6月24日威客项目】如何用matlab回归连串可逆反应动力学数据
任务需求本项目资金尚未托管,已经联系上发布方,有意向可以先联系马后炮项目对接QQ2042273507。费用可商议。本人正在的研究课题是关于连串反应的动力学数据的模型拟合和回归,反应方程式是%C2%A0/u85wGNMD+lIzTnlIfOaFIIVWWDCxdW4jrKzoVcLj23hIj3yLeB1zNKkpD25GLCKCgvAxUxNNTE3RtK7aj0/kKCuaZeEvj4XokHdIrmmE5o01JLoJJQPjgvU5BG/DopEoOL6tCVqYG6K2VMaStE/vqzIBXnokguJ1YNakJuS5GYiNCCJLzTKh0cQUpoZ1oZavgKooFjxWDD7n6KJxbRn1etJq/xRLtiRsqF69vveKSoxKFm7G250Y63wfdmdOYYLRDxRkZBtDt2FD4WlzBOcWWVZHhVrJUpaKQwlQApQAJVDOBDiIubgIM+91w+6t9oIhsJILkImQfeMxw7cf9u8dD5PChgNL7nGhLipJXbVQ+agBJUAJUAKUQLUjQPbgHbQGay0fYYubH5Ly5vcVk0Q2Ym5sxfaIQdi1w7lclClfsErY5VtMXtQaJUAJUAKUQBUnwEEcWbd9JqEnJts1Lva4P/vdWRwIaIYxw1tLrAYpe1RUoZY9YxoCJUAJUAKUQDUgQLt8q0Ei0yhSApQAJUAJlD0BqlDLnjENgRDgcchB3ZQEJUAJUAJVmABVqFU4cSs+ajyw3l/DNqd2MLPdgiBZO/fIEjLpBiaYdsWu92SnFG4Kgq+7YfXsqZg2ZRaW7yRrylLYiH16GpvnT8X0GUux7140OZyOXpQAJUAJVCwBqlArln8VD51sZmDSGZbqbNRqZ4OmMg67kQUgyfcYHtWyQ8/GZKtIBU206G6DOm9v4c47A4x0sYMZOQVHTTkWAYHZaDl2Ply66xV7soKs8Og7SoASoARKgwBVqKVBkfpROIHMcDx8yYVFrxaCDc8Ltyg2ScLTY0+gPZycNyrax5qX9g7Po4HG/fuT6e+Z+HBpLX47pIDZ5MzVmR3rFrLZhdg/+ksJUAKUQPkQkLFFSfkETEOpHgSyo33xKNEEk1py8fbuJYQm5kC+Tiv0tG0GshFWwSvJFyee6MBhhSHE50Kkvb6OV2wd9LVmw2vlPDypNx5rtnaADs29BfnRN5QAJVBhBGQVaRUmDA24qhHgIf7FLUTr90G7erWhkXgbnn5Z0Dc3ECpTss/xO29vREmMrSb5HoePtgMGGorVKQvv7viR0zHT8XjxFFw2X4GNM6kyrWo5hcaHEqgKBKhCrQqpWGnjkILA6++h3c0Smdd34TxmYN/6sbCuT5RlVjSen1oO5yn7EZyrUJPwjHT31hluh1x9mhUJ70dxULIaj05qCfA7exef6QykSpviVDBKoDoToAq1Oqd+Wcc9PRh3Aljg+S+Fy5kmGD3MLK+bV1UP1v37wFhdcDqnUJKkp6S7l5y2Y2eU292b/fkR7n4CTAePwoJVQ1Dr+RZsuhMnYwkOF2xWZoH33Mx0sMl6HR63iPOdypoD9Z8SoASqBQGqUKtFMldMJNkfvPE0szXGzxiAms/dcSVSfESdbHn43b1PtBxgZyTu7uUi/tlNhMEQPX+th7pdF+C3LhzcXLsLL0RHtfJ94sY9wcEd+3F0/xIMHrAEd2K55Ci1F3BbuhoHL1/Hkd/t0GXEecRSnSobPH1LCVACpUKAKtRSwUg9KUiAnBbhcw+xxkPQ14acCdryPQ4efY3U2EAExMjqsyXdvccfQ4ucf2gkXl7DS4T/tSAw9TqjvT5Rsor6GLB4IgxijmLNkRCQVarkykDAjr9wP00RShpNYZjghf33o/By+2+4YToRE0cMx8i+DZDBKlqZ58nPQ9o7bzyMEvqe957eUQKUACVQNAGqUIvmQ02/lwAvAQE3PqJhz1+hq6IPu6XjoHpiGma5RkJbW8b5hsl+OPlYE0PsjYXdvdx4vDi5Gdv/Jco3+wv8fCKRkR2HoJAMqJED4YO3zMBy97v4kJaMsNcZMLMbh/Eu87Dd9y3OOigj8OFX1NbTgODseIle5aKjw0aM3ymsGDMVrkGi0+CLdkBNKQFKgBLIJUAXHuSioDelSkC+HoZ6hmKoyFMVqyW4+nwGeLVqSxxwzeQGyVM2w7yzZ9C0hai7V0EHVmM34Db5k7ysHFbiCvnLu1IQWS8euy8EYnYra9RkheCadwa06rIR8jQS7B6twJBtD5m8oPKcFrhTQcN2/dHbeAs8CpjRF5QAJUAJFE2AtlCL5kNNS42APFQ0JZQpaW0G3HqA8MSPeOb9ComkO9eyXTPUFjQpSxKoJtrPmw79M8PRracDJiy5DnXr1ug21wlqro6wn7AEu29/QhZfoXKTEXpjAxz6r4Ff+C1sneaCXYG0JVoS2tQuJUAJFE6AHt9WOBtq8jMR4GYiKVUemloqENcSeVnJSGFqQcF3Omw22uLm1VHQzQnBhvb98NRhL7Yv7ItG4vlPuXFNxrVRPeDhfBfH+tXOfUtvKAFKgBL4FgFx2fMte9ScEqjcBBTUoCWhTPnCyqvWhhYZcOVmsZCTw4FgWpJKA1iayiG1USvoFVCmlTuKVDpKgBKo3ASoQq3c6UOl+0EC3ORAPPmvM2Y6KiEyho2M0NsIadQYsfeDkZKegAweD5kp6ZxjpMkAACAASURBVFKn1RRruPUH5aLOKQFKoOoRoAq16qUpjZEEAYXaFhgwYTqmjzXF02VTsPaJEZxmT4D+o/XYficJSLmJaVYWGHX0I2nBZiPO/za8wxLxyfchXsfJWt4j4Tm9pQQoAUpAggAdQ5WAQW+rMgEuWPHJZGN+bTLLmLRKk9Ihr6VBlujwkP7qKNzj+mNOT93c8deqTILGjRKgBMqGAFWoZcOV+vqzECAHmIc+/4L61qbQLPEM458lklROSoASKA8CVKGWB2UaBiVACVAClECVJ0DHUKt8EtMIUgKUACVACZQHAapQy4MyDYMSoAQoAUqgyhOgCrXKJzGNICVACVAClEB5EKAKtTwo0zAoAUqAEqAEqjwBqlCrfBLTCFIClAAlQAmUBwGqUMuDMg2DEqAEKAFKoMoToAq1yicxjSAlQAlQApRAeRCgCrU8KNMwKAFKgBKgBKo8AapQq3wS0whSApQAJUAJlAcBqlDLgzINo0II8DjZ4FZIyDRQSoASqI4EqEKtjqlepePMA+v9NWxzagcz2y0IyqrSkaWRowQogUpEgCrUSpQYVJTSICAPdZPOsFRno1Y7GzRVLQ0/qR+UACVACXybAFWo32ZEbfxsBDLD8fAlFxa9WqDmzyY7lZcSoAR+WgKKP63kVHBKoBAC2dG+eJRogkktuXh79xJCE3PIOait0NO2GWrSKmQh1OhrSoAS+FECtHj5UYLUfSUjwEP8i1uI1u+DdvVqQyPxNjz9sqBvbkCVaSVLKSoOJVDVCNAWalVL0WofnxQEXn8P7W6LkXl9F7wwA/vWm1FlWu3zBQVACZQ9AapQy54xDaE8CaQH404AC7zkpXAJnYPLx6gyLU/8NCxKoDoToF2+1Tn1q2Dc2R+88TSzNcbPGICaz91xJZKTF0tuCkKuHcSOfw7i1nuidPNM6B0lQAlQAj9MgCrUH0ZIPag8BDiI8bmHWOMh6GszAi4t3+Pg0ddIjQ1EQEwy3hz4C0depyE78hzm9BmDI2HZlUd0KgklQAn89ARol+9Pn4Q0ArkEeAkIuPERDXv+Cl0VfdgtHQf3kdMwS3EF1s5SQ4jxLPzZvRGUuQ5o+L47zr9JwwRj7Vzn9IYSoAQogR8hIMeQ60c8oG4pgcpLgAd2Sip4tWpDTbIvhvsZx4ZNRuy6i/ifuUrlFZ9KRglQAj8VAcli5qcSnApLCXybgDxUNPMpU+KI9eocnrZbivEtqDL9NkNqgxKgBIpLgCrU4pKi9qoEAV7yM5y8q495/+sCbZr7q0Sa0khQApWFAC1SKktKUDnKngArFFcv/AebGQ4wVs3G19eBiJOYBFz2AtAQKAFKoCoToGOoVTl1adzyCLDDcdxlCFb5cqGuLAdwc6A1/DiurWmHGnm26B0lQAlQAt9NoEIUavrbU3C/FIEs8XQopQboOdkZ1loKRUaEHXEZbqffIF28gFCxDtqNGgbth0dxI4pdpFuxoZxmW4ye3BeNcofPeMiIuo9j+8/i3+BosGsboWUra3SwaQs575P4b+AKjDXJtSz25hu/qfBdvwy3267A0t66KDpWYq94SAnwwIFrUSjWYg55TViOdUGfvIiIPSrkl4f0cG9cvHADj1+8R0xSFhQ066OpRXt0tx+GPhbakJryzf6IG+4eeJmc70RRJV10HDceXespgpf6Gqddr6AAelUjDJk+As2ppiokLdgI99yLs8EZBc2V1FCzliZ09EzQ0rI1TBtpSKcLccFLCcApt+v4WKwsLw+NtmMwqV8j5OZiXgai7h+B29l/EfKZDU2jlmhl3RFd28rhocd/6L/CCSXO8im+2Lj8FixXLEMv3eLleGR/wi23k/CXymOKqGc7AaON38HjqDf+k4qjHFSNB2PKiBbCSlBWOC7tO4NglrggUUZjuykY3UqjIFf65iclIDyO8XyYBUb0MxDlYTa++p6B2/E7eB2ZAmW9FugwZDIm9DZEDVGfKzvsIo4Hm2PUAJPcd+UBoEIUKj9i2Qmv4TF/DNY8TBfEs/nCm/Cc1Szvo88fe14y7s+1wWSvVIGJWscVOL5zLFprK5PWBguRN9fAacZpfCGmtTpOw7wBpAAhDRGAASeLhZT4cPh5ncO/qYNw9PE2dBQcQ8JF3N2VGDnpJNK6zcHKad2hx/4A/3unsf+ILxJRCwOO/IvtNiX9QONwYYgN3Ppfw+XJTQoUiIIIyPyPC1bkTawbPRNnYogFjY6YMr8/GgsjAoaThfSUeEQ8u4Lzj1Jhd+JfbOlUjPNUMkjBs24eVp4IRt2+szB9ZA/8aqGLjHd+eHjRDbtOB0G73+/Y/Pc4WNaWKAzZ8Xh1fB6c1jwGv+ivM3ATjq0dhOa1CXPRxc34jIdbxmHygQjyRg6mM45g/6yO0Ksh4Y/YMv3NI8BjI87/AGaO2gT/HPK6cV9Md+4AHV46kmI/IPj5Yzx4+QVqxt0wdNIczHa0hGR9k8uKxK3VYzD7ND+j1EKHafPRv7EKSQFyMVxksVIQH/YMV889Quqg4/D+p5Pw5B1uHO6tcMSUk2noOucPTO2hD/aHF3hwei+O+iSSPDcQB//dia4lzvKecOjqin7Xr2BSE6mqGV+iQq/suOc4OGccNvvwc5gexp28gMUd64Kfw7jJAXCbPAqb/fhaVR8TiNmijjoCM7GHnJQQnJvniOXeDTFuxzbM6tsCWsUPXuwN/a2UBDIQdmEzdr6xxIJFdjDgH8XIjcfj9c6Y5BYMXg0V8DLyalyNHXfj+F/90VCQ/mxEeW3GjsC2WLCwH/TyiqyyjSl/2UxFXfEXHBhjgyaMEf/P6jfmSXLhkuR8PMGMMhXZJfYdzsVKW073YZZYCc3tDn9kONKmgidOtCczpcds5kGKyJDlz6zuQNy0nss8kAqbw8Q9WMX0MGjKDM8fjgx/C76KZTwHt2D6uX5gcgoafuNNOuO7yFrIpP9h5qPsiDAXJvVg5t4XR4TvJZH56RWGtCil/c8IZQ6NMif+GTJ2m/2YlHzGDJPFhB0fz7QmTI17/cX4JElb4H49ywwVpFELZsptKUi54WT4r2Y6C+zYMv8EZ+W+r043WZF3mWs+UUy6NL6iEeSEM269hXm28yp/hiVlm8Mkvz7JLLQ1FOSFNiN3MM/zpW26z2/MLwLu/ZkjsjMKE+3pwvSe/YBJFfnNevGnIK2s5txnpFKTE8t4/2HLGDUZypz/KiVI8R5izzPDTPsw7h9KnuPZYW6MvSAerUielpKKyQrcRL5DPiMrZvFjyfwuFiudeb6sI9N+dr74iI3p709KIIsJPzGZ6T5sF/M298PgMol3/8f06L+UufwuTVDG56SEM3c3DmMsBHmkNTP/nmT+yWCC9joxI//2YfJ9OmXGpEInJSmo1UCtepZoyK8zxF/E7hvRyNfBKKpNsPHuzCF8sHLCr2r8V4pQq6EkMhP9yKuilrgWIieop0ubkyeF+t0wwdEaOqIaLCf2BXz4FXy1OtCQ8k4BOjYLsXmqCbI+JyKvDlTAyzJ4IQ9VjdyICFsc+UNRqA+bSY6wEkeEmHM+e2HFvAMS3V98R5l4u2cm1j5hAUazsH6GNTQKpLgKjEaswdIOymDeuWLOam8kibvUiQ/ySqrgDznymasqyeYqr1JD1Gog6VKIHb4PVflS0amHyI390K7TcCzceg5+0Znf3tpQThmq4tZUAbQK0LQYhfWn9sFRH0jz2Uq2U/RAlMR4gLxqrdzWWgHnAtgKqN9tEhysdUTDDhzEvngi6MVRq6MJ6SxfF10XbcFkkyxEJ5VvjlduOggTuvA7pFNx/6QPEiTyn4rpCExoy8+0CbhBeo0kzQRRJEMTj57Jo9soa2gKXtD/qgIB1qvdmL3+C0b87QIz8dARNwa3TyXDacdK2JnUFORpRQ1DdF+wB+ts+YohBY+vB4OUdqJLDS2cF6D17XlYfP5z8YbSxE6/81f8OX+n8x93pqg3ENMt3mHFHRZ893kgxH4hzPlNe8kr5RkOnc3BgE3tET31mKRJ8e9JF1tSgjLaTXHOG9OUVxDefzmHvV7jsHOEuI+e7606zBydYHYpoxAlX/ygS9cm2awgKQHKv0yBk6hXlZfsi22T/4fbMWawkQiMF3sHW93DyBs5tBrvgGaCyoiEBfGtoj56u/TA3z7Xkei5CWend8IUE7FSF1v68V9WwG70dDlUQNHI12gIQwPNEnSN/7gspesDF2kfw/A5hYfslOe4uIP/9xtZA1sP/SZMw+Z54747OAXdXliycRQejPZA7OMN2HC3N3b1q4sC9SIZIfCykpCo3A6TnfO63+UVhS6/nN+NK+N3w9Egd2SVZHlzDHcyx2WW7GqtjCBK55W8DjqPtUHNR7eQ/uAovGN7YWh9kcyKeug5ph3W+D9FOhn39Y7tkWdGQs8MvYRr2T2xvnUxhj5KR1rqS1kTYIfh5LI9+Gi5DUONJPJndjoUbGdJv+PLoqCL9oPMIXf/ObJJF7BEfQyo0RKjnXTRe81q3OyyF3bifFVGcahwhQo5LXSZ7ogGdw7hy4djcH08Cdt6aEkUGFzE3NqPRw2cccpMFRu+F0TSPaxazsHK/XYQbzanWK8j+poBwUFpuLfYAVOjN2DdTDKOKkpDZaOxWL/gewMsK3dJuL9iOTh/7sdAfkQyQ3Bo/v9wMJifjUKwb+oIeKppw2b5NoyMvkA2iufLYYCu1rpFKiyNlt1hIncd/kwwvLxjMNGkJGO//DC+fSnW0keH9r8iRzyHROREUacNbDroI3896ts+VhYb2fjiew9+of646/tZUAGT02wCi05d0bWj9Q8LqWE1HmOMPLAtPA0PTpKx/T520CmGRk26vxIrclZh76DcHI96HfujBYIRnHoXSx0mI2bDX5jeXV80d0EZhk4bMe+HJS6pB/LQbj8atpq34EUmNx2/GY1B4xqL8msmPvp/gGB1U7ZPPrMMBJ27Cbl+O2AubsWUNGhqv9IRSPd3g/sbOVhs+QV1JPO5mimGjZIlLg88DofMliFTEayaQLrdoIiGXe1guOov7PB4h97zWxQ+T0eW1yV8V/EKlQisZkEmtVgexeqAVNzYdRkLbMbBQCwZqa14HgxD27n/oLHi62JFj5uVjlSy5ZywjpuD9PgoPD20BQ8TZku7V2mO8RsX4V/HTfDLiMe/Oyahx1V7/L5xBcZY5Zv1Ku2yfJ64WWClpiJVkKkY5LDiEeV7CNseJmKmWAKSySbtdUNy7wHY+9EU0/afxsiG/JhnwP98MLL49kgXcbP6EjU9sVuJX/majcDf1tY/Hgh//A4slyal3oWmYmyPrbvthaFmxeD5lVM45RWG5jPGYHDLn7tE5FrXwocxfmjWexIcR4/C4C5GqJXXMJQg/R23Knr4pZ0OSZh4ZL/1xvsMolClGmQ8MgmJ5JMUYYAMJx0Jkb44vMUbibOkw1NpPgHrFz3CqE3PkBH3CLsm2uKa/VL8vdIJVtrij07aTbk8aVphZF8deJ2Ox+vjlxExchaa8bMsafF73K+JPjZc3PROwOtjl4jZbKFZ6kucvacKuwNFTGYsF+FpIKVHIB2BZ2+TDv76GNastkTDqqgQ0hHmE0Vao7aY1F+/QMNBUdeCTF4Fznp6IWx6i4I9oEV5XUKzCvyCJCRVbgS7Wf2wfdIVsnTEFcdeD8fytsICNs3/EM5mDcT2rjqQ58+GLMYV+s8Y9HOVE9RaOLwcZKZmQOC0bUHH6i1n4KCXHjb8j8wafpkGTvglrBl2D17j1mHzEjs0ka7uSHjAxvt9jnDYHCRjjJUHDoe0GAO6w3yDQsFxUCVjTDnjiQUWhXouDCdkO5x6u5GZbRzyj4uczDRkFBYRCcmEtxykxYpGE9RqQ12yplfALnmhUBN1ROJkJyQhi4ivKeUmDVdndcdT1YKjdUx2CvkAinNlw9frCG5fvYZbd1/iS448mgz9HV2/vMFbhVp5XfHF8apS2eEiJSQcBhN/w6/q5JNKC8bDa8FEQjk0aGGJtsaCWQI/ILESauvzRwhJbSf1P6QKmmuS3oVg5+jecJfjkXxC8kpOJtKEGQUFs7w6zGcexkW9v7FoxTG8SuMg4tJqjLh3Gc7rtmHRoPw1fIlw2O/hOnwItgbJGGPlccDP8i9tTbFJoWAeUTKeCo8LC9Gy0CxfExYj7NDgNOmpen8aF0InYXErFSQ8OYGnOmNIL0wCQrz3ICrsNM4Hu+D3NmpIfu6Bx7WH4EjToiuLEjGgt5WdAPsz/AKSiJQGMK5XvHTlxf2L42TIsOX0RehVT0YtVrU+jEl9FKFPEJjAhbmeDDulxKVyKFRSD9HqNA1jml7Bng8xOLvnPqa6DkBd5ivuuz5AvXGnIWjApBQv1mZLLuGCs35eAc1LRfCxmXC5Ktu9mpE9Vp23wZCTa/H72vN4x07DyyNzYB8ciSPuM9Gm4Ewe4pESGg/diGPtMwVdDVI+Myl4uHgyLnTZic129fLkEFuSU0VdybEB8fv8v+aL4XnZGfq56c9DWtAxzJpwLb9NGc8KUK3Fz5BpZMZSjrBCIcNW7ismG1miglpBXR2iobZcY1L9Q7dVR7HCWl3infA2O/wAJk48JpjsUsBQ4kVm4G5MmL1DQhYeIj3/wsJrWtDVVoOMcljCdWW+5SEz/iuS2Pn6solCbTJwKm7v/O0HhWfIShiR38rqoklikl6aYdGly3BqlJtRyBrhIByfMRHXJa3l3qvBcPBqnOk2FKfWLsG6c6HITnuJo3MGIjiKDLvMtEQtqcqUyKFSYwzedAK/ZuaPJ1mpk+KN31080XnnNgysX9CxnKouDL9RPtYwc8AQg0PYE/UZFz1eY6a5AbyPBkB/xEoYmrExssUebCBrxS+efIXZrYzhe9IPDRwXoXHpD/fnkqI35UyAHYcIfu1csSbZgKU4Yafi+c6NeGG5EqentMjX3Styr6gOLUH7LAFRCWRWn16htbriBFiknUqiUImMqqYYOa093Bf7gnVnNy6E98J4XMDBkLaYublRgWZ8kbHKbyivgRaDJ6JbgKADNL+p8FmhNlo7bcbFXvbYO38mdvqkgfVsK+ZuagevP9vLmB1LNl7XbY5WurK8I5mCtFRU6xPzNqU5FimPWmZDMMH2pbArV1bQue+UoGOoRZ5IqyYrHkmZBZqcuTYFN9mp+Cpq0Go1ritjPFMB6jr6MDAouECRzdLMnW0q7an0k5rFfLx9OxS+l07Bw+McrgfGQ3/0AZxbYwudPF0g7Yg+EQJkzWoESUf+1bA1GhWjPJDXMMPgibZ4JaMxKfSIdErUboMxmy+jh/0eLJy5Hb6pLPhtmY0t1tewsoNGwe42eRXoNm8N2Vk+AuqKaqhv2gqtm3xnsUI2BBk4zBB7tkYg7upx+I6xxsl3JhjdowEUSeHa39kaW35/joQbR+Hj0hMer/Qw+A+9HysbxDDob+UgQCr2bH7FXkEJ8gU7OvLJyEX8vY34K2QQ9riNQuEdFYpQFqw+yEBiGU+4K1iVzCdy+T0qoCHZdGAQv2lOJk0cOvAYPkdPgTVwCjqVxi7mmrZY90+/3AlJ5MwRRPi+BukBkLqU63fB3EOe+KODcIpM9Fl3PE2VslLBDxrotn4b+ornmRQqjTIatrcRLknCRzyLyCjUJt+ATQ7hDhXEUx2WPZuTOc5lc8mrG6Dj6MXY6eUL/9sHMKHmQ1wNKVq2spHkJ/I1MxzefsJM2KRfNzQqVs2d7NHQ/W9s6SeRUVjhePo6Pt+sdWXU7zIPB87/ifaCLB+Nc+6+ZAFLRVwqaNLPASb8oFNvYvNqV0SRpUNdBDsvKaBBD2d05MuYegf//L0HbxsNhY1gvkBFyErDLBMCCurQ5FcYyfwRTsGOEKkgM0KOYIW7Gubvngtr6fEpKXvEM/AEPTyKUCnjZX0Vq1AFwEh3ljj6mtaYON5U8BR3aj4WXakLZ6eWpbvXKicG1zfswPPUHIQdWoWDgTIKc1VjDJk9APz2HbK+IiGDtO4q3cVBzLUN2CUqaGWJp9bCEWPM+SZJeHSJbNkoy5LgXTY+3vJCBP++3mCM/7V2oTZLz0ABGibdMW7pHxhHp2gWgZWk8/Xdwp2zavbArFEln4DDibmGTTv8kJYThsOrDuCNjCyvYjIUMwcIcjzJ8vGoqCyvbNAHDoI8S77PZ6mwHt0ZdUWllLxuZ4zuVouwykHo/Q9o6mCDMl4FUUS6UKMyIaCkjUb84ofDQhq78HKXHXUOq/6KwpCti2FTV7p7i5OVLb10hijnVEHnpBYMdL4x7vCDkapQhcrJSENWVioyc1uJZJMBxxnoJujSSkFOhynory/ZfcQVTHzgx5mX/1x08iweZiqcCdlq8N5mbHykBm2ybVUDgwQcXX4IIbJ6gsnmEIIeB93WMCmy9lN4aN9nwohqU0W75sbew9a//4WqtnDylrwgJck6yFyWxL2KEUb/ORXG5DbecwvOhcvu/+PG3sdut3fElg4G/TEb1pK9ujwy0UVU4+Hl1nzyycYjNUDBKyJ7YXbyOaGPQgJF4+Ii6elOzFp8l1SG9DB00zoMFO6rJqRN0uabF9lq8P6m9Xisqg01lQYwiD+CPw4Gy5hIR6ZQifrYdNs0yzch7ZuhlJ4F5cboOdxC6J9md4z8VajkhS+08MuYnsKKrnwbDOvaoOD8hNKThPpUEQRIHm3btg4JOQER0hs550rDryCuW/kcndctQ+/6kvqB9LSFn8MGtzdkSxuJSzwuW9cKretK25ewVSq3FahQyf67ATHI+PQCZHld7qWg2x3Th9cnz40wcmpnqTMrOSnR+CpQfhwkfEyU3vki8ys+JQu9yUhMF65by/WVNPpTSLeZ+/8wcsoFoEt7st+jChnvqYusN5vhPN0dr8mi/NyLHYmrrjfIXr5q6DR3MizKqv8zN0DJm0zEfsyNCFiCWb0S5txUhN8/gEWOU3ERndGeX8Aq1UYDQaMyEg98o5Ee+xyeZ1+T6UhkzNV6Pty2D0cTznOsnbgCl8MzpGpv2V8fYfvUubiSrI1uyw9jdV/pSVTZSdGi7j8WYuOk3Yqlyk6KEdlJJbvs5BdYbIv+FiCQnYBoUVKzUzPzumLJJiTxwXdwaNlo9BmxA6+1OmEGGYb4q189qfHCzK8fIXSeiSRW/qm/XKSGPcDBBY6YTrJ8pw5krJEUVs3rZuHNZifMdHuFVKksfwVu1xPJGrbOmD25VZl1+RdgUOCFIvR6jEAbUjJp9xkFK01pCxptR6KPLtnBq40DujSQbplI26RPPycBMtt7aC9StY+Bf2iKVFnFjw837gHWkd2PrnyNwoVlZEN853G5f84O/WA72BU1ephL5V9u8jsEfgV0ew9GizIuy8tWXctMUf6pKiewhxQQ5y+TWOIK5o7hwnHEZMwaa0lqxuqwmDgVXT8pYZS5oKlKqh3k5BNXN1y6fAZBIj/fb56C2dEOcJwyHDre7jhy/hTuiaolkWSs1HyXMmrUqAFVFUWyd34yUjLEBU4dDOvSlCzulUcNvWbQ181G4/TTpLvrIkysLKCvkoaIp7fhm2SGsVvXY+Fgg2JNuJGOqhyU1DVQU6Uk9RUeUl96YO+hczhzVxSRD9sxwHQ3lGuooYaaChQ4GUhJycitLNQZ3hVNBONe9dBjmj12TruEh4ts8IvRYKza/xfZMp1/qaCR/XpcaN4Z+zZtxx99O2C7BampmdRBZlQgAgI+QqnNMKw6Ow8j29XNK7AJ8+v79+PCxTMIE/jDw4uVEzAzcDBGzZyUd9rMrkO45HmJbPrFv2LhMcsFWUMGw2UOPW1GgETmf/zTZnbjwMWLOBcttJB4bgx+uVUXWiqkp4UcLcclJykZtG6PMRvmY7g9qQAK0llol5fyEqf2HIbnqbuimvgH7Ohrij1kC0g1NTWoKHKQkZyCvCzvgM78GRvyNaDXTB+62QZIPz0dgy6awNKiEVTTwvHsNtkwwtwJm9b/BnuDYg7SSsZNTgnqGjWhXJIsL+le4l6xYTc4dmiB0BGthBv6S5hB3YLwMEOkYRfa3SvJpQrd12zrApfWnvjH6xkSHAbldvkjIxC7JkzGsTB+We6LRyEyIm2xAkMEC5jFZjwkPvNCkEIrLJjYWkrRim2U5m+FnTZTmpH4Xr946ZEIiteBWZOakOdmIDYiiCwbyIRGE1OYGtaFWikUDt8rW8ndkWOOPofgfXJNGJo2hkYhVSUu6zNC3oQjJjELipq6aGJmjqYSp8eUPFzq4uchQI7wi3yLeB1zNKkpD25GLCKCgvAxUxNNTE3RtK5awZm9FRI5kpdjPiNHtzFqy8jHnJRPiCVbEjb85uLqChGeBloKBDLe7sRY5/uwO3MKE4y+o4InloFsDOQ2bCg8bY7g3CJLqlDFXOgvJUAJUAKUQHUhQCbjXVyEmfe6YfdWe9GRbCWNeyZC9o3HDN9+2L93PExEHZ4l9aUk9n+qNlhJIkbtUgKUACVACfysBMgevIPWYK3lI2xx80OS5GTLYkUpGzE3tmJ7xCDs2uFcLsqUL1a17vItVrpQS5QAJUAJUAIVRICDuCdHcSahJybbNS72fBb2u7M4ENAMY4a3LtcZ61ShVlA2ocFSApQAJUAJVC0CtMu3aqUnjQ0lQAlQApRABRGgCrWCwNNgCyFATi2R2pyiEGv0NSVACVAClY0AVaiVLUWqqTw8Vhiub3FG+2bdsfWt7B2dCqJJwk3nFrDdEUZ2/iFHqAVdhzvZ6Wn65CmYs3QXrrxNIXsUP8WZjQswfcpMLN9zDzHksAl6UQKUACVQFgSoQi0LqtTPEhOQVzdGJ8sayKrVDjbfOudL7HuSL44/rImBvRqR7SsUoGnWHV21g3D79nsYjJqEgeaaUFJVRpz/a2RbjMW8Kd3R8AeWtImDpb+UACVACcgiQBWqLCr0XQUQyETEw1fgteoF05rFCz7J9zh8dIZjgFgB89Lw3u8z0Lgf+pJFZ5kRl7Fu4SHIzz0F19kd7Nld0QAABjNJREFUoCNjk4DihURtUQKUACXwbQK0iPk2I2qjPAhkx8D3YSKMJ7cE781dXA5JQo6CFix62aIZ2dWn4JWEp8eeQHv48rxzENMCceNVNnT6tgP78h9Y8LgenNdtRYcy3hC7oGz0DSVACVRHArJKqurIgca5ggnw4p/j9md99G6nC03NJNw574csfXMYyFSmRNikpzjxRBvD7AxJd6/wYoXeIcfyAemPf8O0S2ZYtmUGVaYVnK40eEqgOhGgCrU6pXYljmvKq+sI07ZBm8wb2HMWmOb2N8a0q0+UJZlsFHwNh/75B4dvvAdLdEJKku8x+GgPh524u5dMS4p88AhxSlZw7lSDbIh9Dvc+0xlIlTjJqWiUQJUjQBVqlUvSnzFC6Qi585IoywAsn3gGBmOHwkzUMs0IPIj1hwKRnh2Fc7P6wulQODm2LwnPjj9BHQc7GIpPYcn+jMd3PgEtBmPkwj8wuNZzbFt/B3El3rLsZ+RHZaYEKIHKQIAq1MqQCtVdhqwP8PbNRKtJ09G/ph8OXo4UHVGXiZhoY8xYuxizf9sM11WmCPF6gzR+d+9jLQwdZJTb3cuNe4pb7wHDXr+gnm5XzF/SBZwb67CH3wec7+JmsSQOtRcZcjORnkW0b+5h6fkc0UdKgBKgBL5BgCrUbwCixmVPgBPjgwdfjTC4nw1GTLbAe/dj5MD3OLzxT0LjvrZoJFrqwvCU0bSTCThkdu8TLQfYGYlHT3lIenEdQUw9dOqoT5QsOaTabjEmGMTg2J9HESo4lJ7EgxsHH/cdcD3iiqV2A7H0dhy4vBS82L8Maw544cbh3zG4w0h4xkqcvF1I9Lkpwbh+4B/sOHgT78X90IXYpa8pAUqgehCgCrV6pHMljiUPCf438bFhL/yqqwI9+6VwVjuBmTP2I1JHO28zbNZrnPdph98n1serE4+hOcwexoLuXi4SXnhgyz//kq7gbHx56oPIjGzEBQUjo4YCELQFM5cewL0IFtL9d2D9vTQoKmmgqWECruy9h6iA7fj9uikmTHKEw6h+qJ/Jyj3AvVBo5KDjQ+sOIzA9G1FnZ2HA6MMIp8O1heKiBpRAdSFAN8evLin9E8WTx05BKq8WaotPeOclw8/dDR9t52CYERefX75FhmFbNKtNFGaxLx7+8xiKsRGrcXVZK1FXMRfRh/uiv/cSPDrUAxopDzC9y0bY3LmCkbqF1zUz39/EU1VbdCNNZ270CQyxPQcXnwsYpF1sYahFSoASqIIECi81qmBkaZR+DgLyKpp5yhQsvPO6gP9sZmCYiQqy48KQrG9ZQmXKj7c81OrpIuHqRbxJ5z+zEHr1JmJr64Ad9AxRgm7hHLB5DDHjIjnkJjYN6Y91z8Jxe/N0TNkRyHckuNRM+giUqeCB4ULJsCOM1UWG9IcSoASqLQG6sUO1TfqfIeJsRBydDseVvuCpb8FyouhytIbj6K3V3yW8Zod5mKbviBGdH6FtK1N0nLACs9vWwZjtozBy4HvYd9PB5yy+QlVAbdNuGPTL7xiw7jSsd/0D10bi8VrJoFl4fc4X7Zatgal4trGkMb2nBCiBakWAdvlWq+SmkeW3PjOTUiGvqQUVcf8Mj43kFB5qyT/FLIku35Qbo2C9oT+87zqhodhuLkIekp+540BUd8wabpw72zjXmN5QApRAtSNQoJiodgRohKsZAQWoaUkoU37s5VVQW0sNCjyydCY7B5wc8i4jFHdDGqPx1/sISUlHQgYPvMxUYi7ExQq9gktfbDCNr0yzvyIwMO7bk5mETun/lAAlUEUJ0BZqFU1YGq0SEuAm4831C3gcxULa+38RqNIH85b0RODI7jj5y2bs+r0rwqb8glnpK3BjoxzWDluJp1x1KMuRNi9HCw7Hb2JVuxolDJRapwQogapEgCrUqpSaNC6lQoDLikeyfB1ok1nGvMwkpMtrQYMMofLSX+GYaxz6zeuJIiYBl4oM1BNKgBL4+QhQhfrzpRmVuEIIkD2FQ57jvwbWaK5ZkuU6FSIsDZQSoAQqgABVqBUAnQZJCVAClAAlUPUI0ElJVS9NaYwoAUqAEqAEKoAAVagVAJ0GSQlQApQAJVD1CFCFWvXSlMaIEqAEKAFKoAII/B8c1kqo3n4LzwAAAABJRU5ErkJggg==,希望能用matlab拟合出来,实验数据已经做好啦,请求有经验的给予经验帮助,要求是给出matlab程序,回归出两步反应的反应速率常数,价格还可以再议,谢谢马后炮威客提供平台,,,附件是文献,数据的处理和这篇文献相似。
详情可登录:http://weike.mahoupao.com/index.php?do=task&id=3744
有资源吗~~~好棒啊
页:
[1]