Horse 发表于 1970-1-1 08:00:00

如何在EXCEL中解一元多次方程


记得小Y在金融资产讲义里提到了在EXCEL中解出那个实际利率,而不是使用内插法,今日小Y无事,列举几种在EXCEL中解一元多次方程的方法,供大家参考,不足之处,还请大家指正。当时的例子为:59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+(59+1250)×(1+r)-5=1000这实际是一个一元五次方程,其实可以将这个方程弄得更复杂些,比如说加个三角函数COS之类的,再对r进行开多次方等等,其解决方法是相同的。方法一:试算法根据财务知识,我们知道r的值为0-1之间,为此,我们在B2中输入公式:=59*(1+a2)^-1+59*(1+a2)^-2+59*(1+a2)^-3+59*(1+a2)^-4+(59+1250)*(1+a2)^-5-1000,然后选中B2的填充柄,按住CTRL键,往下复制,我们在A2中根据精度需要,如果是保留小数点后三点,则输入0.001,然后在A3里输入0.002,选中A2和A3,选中填充柄,按住CTRL键往下复制,在B列结果为正负交界处选择一个B列绝对值最小的数,其对应行的A列值即为r的值,假如是K。如果对精度要求特别的高,则可以以K为基数,不停的在此基础上增加小数位数,至到对应的B例的值最接近零为止。                           方法二:单变量求解在A1单元格里输入公式:=59*(1+a2)^-1+59*(1+a2)^-2+59*(1+a2)^-3+59*(1+a2)^-4+(59+1250)*(1+a2)^-5-1000点击“工具”——“单变量求解”,将目标单元格选定为A1,将目标值输入0,将可变单元格选择为A2,点击确定,A2单元格的内容即为上述等式里R的值。如果不将等式里的1000移入到公式里,则可直接在目标值里输入1000,然后确定,A2的结果与公式里包含“-1000”的结果是一样的。方法三:VBA逼近Subtest()Dim i AsDoubleDim j AsDoubleDim k AsDoubleDim k1 AsDoubleDim m AsDoubleFor i = 0To 1 Step 0.01 ‘精度为0.01j = 59 *(1 + i) ^ -1 + 59 * (1 + i) ^ -2 + 59 * (1 + i) ^ -3 + 59 * (1 + i)^ -4 + (59 + 1250) * (1 + i) ^ (-5) - 1000If j< 0 Thenk =jm =iExitForEndIf Nextm = i -0.01k1 = 59 *(1 + m) ^ -1 + 59 * (1 + m) ^ -2 + 59 * (1 + m) ^ -3 + 59 * (1 + m)^ -4 + (59 + 1250) * (1 + m) ^ (-5) - 1000IfAbs(k1) > Abs(j) ThenMsgBoxiElseMsgBoxmEndIfEndSub这段代码看起来比较复杂,变量也多,其实是为了更好的控制精度。运行速度倒是比较快的,就是步长为0.0000001的时候,运行时间也就一秒左右。方法四、牛顿迭代法该方法比较专业,但在编程中却是十分常用。牛顿迭代法又称牛顿切线法,其公式如下:
F’(x0)=f(x0)/(x-x0)
x1=x0-f(x0)/f’(x0)
其中x0为根的接近值,f(x)为原方程,f'(x)为原方程的导数方程,x1为所求的根
注:导数方程,就是变量的系数与变量的方数之间的积,同时,各变量的方次减一。这个表述不太准确,差不多就是这样的吧。
使用该方法时,我们对原等式进行变形,并将(1+r)=X
通过变形得到如下等式:
1000*x^5-59*x^4-59*x^3-59*x^2-59*x-1309=0
同时:
F=(1000*x^4-59*x^3-59*x^2-59*x-59)*x-1309
F1=(((5000*x-236)*x-177)*x-118)*x-59
如果我们只求X在0附近的一个根,根据牛顿迭代法,我们可以写出如下代码:
Sub test()
Dim x0 As Double
Dim x1 As Double
Dim f As Double
Dim f1 As Double
x1 = 0.008
Do Until Abs((x1 - x0)) < 0.00001 '控制精度
x0 = x1
f = (1000 * x0 ^ 4 - 59 * x0 ^ 3 - 59 * x0 ^ 2 - 59 * x0 - 59) *x0 – 1309
f1=5000*x0^4-236*x0^3-177*x0^2-118*x0-59
x1 = x0 - f / f1
Loop
MsgBox x1
End Sub
由此得出X1=1.09995
R=x1-1=0.0995
上述三种方法都有不足之处,第一,需要知道值的区间范围,第二种方法也只能给出多个正确答案中的一个,不过在经济实践中,基本值就只有一个正确答案。至于利用EXCEL解方程组和给出符合条件的全部值,等小Y学习下算法再补上,以前小Y从来没有写过与数学沾边的程序。

http://meng.horse/xwb/images/bgimg/icon_logo.png 该贴已经同步到 Horse的微博

zjwmcl 发表于 1970-1-1 08:00:00

鼓励原创!创新万岁!

fengyaleng 发表于 1970-1-1 08:00:00

真的能用execl表做出来?楼主太厉害了。记下来学习
页: [1]
查看完整版本: 如何在EXCEL中解一元多次方程