本人做的硫酸吸收 氨气包请大家帮忙看看对错
用的酸水包模型和srk模型:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAnEAAAFoCAIAAAC33jqhAAAgAElEQVR4nO3dQbLzuG6GYS0281SWc3eQQfaoDLrapUMCIEBCEkm9z+CWD01RFETps//bto//+9///N///ud//vu/TgAAMOAgUwEASEGmAgCQg0wFACAHmQoAQA4yFQCAHGQqAAA5yFQAAHKQqQAA5CBTAQDIQaYCAJCDTAUAIAeZCgBADjIVAIAcZCoAADnIVAAAcpCpAADkIFMBAMhBpgIAkCOWqcdF0aI9dvbXxr+22zPxHrB7q+7xQ/0BwEm8qT48ged3upZAphbhN/L4mqnN/s0W/2nu6+nc6sWFDuAjOm5NWfvl/ubhzVSjlHYuillYZ6p9qsShomurezWENmTNAbiP/V7F+Ce9s7rldsQk97emnEwVT492wq4B+XCmRtdQx+sy1hyA+4j3Pe3eWN+Q7f6hvUP0zvvU+tmH36fe99KMNQfgPs33o57sPCr+vQ8fweZuz1Rn/2amimvIM73u/g90BoAQ8Q7jeZ9qtA/uHVfv/DdKuY+dp9nI1GhgG6/sWHMA7tPMVO19qvH+dXDvuOr8LI3YIj6u/y1C7D8yfuBolU2MRm0FG/2jswIAj+ZN6Xp7FNvr/s77Ffc3J77zAQA+gSx8AJkKANvizeXDyFQAAHKQqQAA5CBTAQDIQaYCAJCDTAUAIAeZCgBADjIVAIAcZCoAADnIVAAAcpCpAADkIFMBAMhBpgIAkINMBQAgB5kKAEAOMhUAgBxkKgAAOchUAABykKkAAOQgUwEAyEGmAgCQg0xNcxxHqHPBGDA0MgDgLWRqmjomi7wsWq5JSaYCwAbI1Bye2Csy0sjUokMzfYGPyFr/XEe4SSBTtfdYv2cTZqP8K2jfUCnj+Pdlv0k99UzViim+wU0sET5i2pWjzceYp/0vOt3jaPWxS2f01/brYd9GxP0+w6iz86jtnh3jOM/jk7yZWmTDfZP2jzzbDeIfxuo/9EwtSnrtII4AhBRrz9//Js0Mc84qZRztErO72VE3UsD6ZL1+4Rv17Ltji6esY5xTqdKLFevJ1PqpOhLq2CieKh4bOxJfkhx/2fNpjmNMxnluDsmpnGZxj/Vjo4xAiLHS+i6ukYtFnMkM7adeKHEr5zjdjJtY0XIqd4m7z5ddAX99QuN4tn3xVtnzb7+eY7ieafuUN8fR/rSrFhpHCy3/sqtHKI76rApY/28xmjYmECVeONGLq3lN3ZqpHQE2OE5fpnbUwTkfY2LizfaB82WEgpEUg+OkH1euzv9GyZ+FdjB4lunxl9HTMx97Dt0n45Bog9frXlwW9bbvrhWsy1jw/otLXOFZs2q2G7tLGcd/TxuZUohzqto99oHz1X3zdN6Qo9v2TSbX7JnaXfqHM7XYvHmwniJ4lg7gYby2s/toHdJnZbeHLvaOcTzHu2Kmjs/Bng+ZKuza//+n9mWh/SCUqcYcsrK57uY/N7/O9YDG9IzV7xkH8PC8yGteFM1gi67PSTLVfzewR0t8dW4PkpKpKecrdPN01jY0zikdvjjVx8T+G6XjX8VTV0U3LWmKZ8Vxivazqq9zPnW7Mbg4Tz/PIM5F4OwG2MSVXzx1jl1c9eb+KWkXqbj+7xineVD+Ooid+zj3Wz8+/9467EOITsaYkriJ56BGxnFO5kl850MO7er6Pb62n/pCsccUuwF7y1rwXDh4AJkKAEAOMhUAgBxkKgAAOchUAABykKkAAOQgUwEAyEGmAgCQI/Y9SvUnbe3P2Gqf2jyqTyt7dn1Kn2UefHwdzTje5lNafbT5AwD2E/tdmubjaH9PoF4fO8e8ZmezXZuJPU9nfzu5AQA7CWeqJ13sbt2Zajw1mKniofVlqjGIeAikLABso+f3U+t2sbPWcs0eT6KI/6B6mpkqjm/sNytTtfrYT50AgC289j7Vn6nasA9kqpaF4sw9R0SCAsDGOv//VK1d/Ade8am7M9X/+FTeYhrHIjY633M3+wAAFnVXpjYfOzO1iLoZHntarnnczPITALCF8GdptHbtrZ621ekI1GtPe+9iS9bj60zqQ7br4Jl/swgAgCXwnQ8AAOQgUwEAyEGmAgCQg0wFACAHmQoAQA4yFQCAHGQqAAA5yFQAAHKQqQAA5CBTAQDIQaYCAJCDTAUAIAeZCgBADjIVAIAcZCoAADnIVAAAcpCpAADkIFMBAMhBpgIAkINMBQAgB5kKAEAOMhUAgBxkKgAAOchUAAByBDL1+Nc/j++fW9h1hvWfQI3lkYXLLRf1vMMDJfVm6nUexbSmOuszzw1T4Z6ViIsuF/W8wzNvCHsytWi/KtpP6c4l9hfb67fFzXIY/bX94stYDOkoaS7qmcIfIqM76vi33zoLjf51o/in0X7NZmN31w3rYZ1zxtewEnJRz0S8AUg0Y6b+2czxTxNi+1HRnioGcVak6EamwsZKSEQx70BVxxm5k7+v5zPV05lMxTNYCVmo5E0obK5Z3qfW7ylDj+3GesPxTNXG0f5k4X4T5z2F50U2/KjnfSbK1FP/TyWd/5BrP3VtqftcHxiTLHJUm5K4oV0BbMZYooiimOko5h0eqCrf+QAAQA4yFQCAHGQqAAA5yFQAAHKQqQAA5CBTAQDIQaYCAJCDTAUAIAe/n4rvYnkAyMXvp+LTWCEAEn3691Pt8bV5YiecXE3x71L1P/8Y1y9VxWd9/fdTtfGdx4jVcWZF9YvLuv10XF/A13zl91Oj4xvzxE44syIjIz3X73MTBSbz9d9PNTLV2Au2wYkWDb4fpar4rC/+fqrzfaqxF2yDEy3qvo7EP4Hv+OLvpzrHNw4BG+D82oqrQ2vXLijgm/jOBwANxCTgRKYCEPC+E+hApgIAkINMBQAgB5kKAEAOMhUAgBxkKgAAOchUAAByxL5HabZPdk81Gdi0MxU9iVr/rPbfs66jeg/1vINRT/8IfXVzzmd1d6/P4llne6Lwb73VD95yncDrk4FNO1n1deIf59RXY3f7uchXAlHPdNqNW3xsDCL+6WkPZe2i7l6f9rDPFDP8b79G8l8P+Ki+569+auQIN1tqnzJ5BjhnMg/qmciY5x2Z2te4rgcy9d1APccz1TjmIjvrp+rNA/Pea6l9R98LzGb/3AwoVuzMqGcuLdick09/zbFE0fyi6/OU3rPltqdLyNRC0c14UI8WmPdeS+0jmrcSMiCEeqYzJumPVfH2rbWn7HQhRh3EzuKfRgGjj9Mlv0+t28lU/EM8ZXNmwBKo5x1y4615e2wOu24lPchUYTZvZWriOHiAc3HXf3reACW2r4J63sR5s/61dGRw6Ea/biWbPPXcP1PFN+zHX0W364O6/+jsk8bB3epFIj4lbmUMdUf7EqhnOq2kxkHlFs3/1LrsI0pZn6d+yp4p5gvf+bDN+gAA4OrpTN3sZRcAAD98NyEAADnIVAAAcpCpAADkIFMBAMhBpgIAkINMBQAgR+fvpz4zOc98tMeTzBNNfedL65zymXFj/PlRz1xz1nNd29cz8D71OpUZTvOvOkWZZpsnDPW692wiXhjahST+aXQ7/nIcxESoZ64J67m0L9RzNFOLYNOupWKclGus2LU9T2M+eFH3Wtd6Zl1jiy4S6plr2nou6gv1THifqr2IEP9MPLZfoNpzS98vEs15jdWLahXUM9ec9VzXF+oZy1TxfZ44v6PSHCc8dT1TtXlm7RpZ5rzGyADngNTTuaFzQDLVuaFzwAUy1d/unPTIsRU5GprPNmt0dV+4xp5EPXNRz1xfqOfTmZp4bN2ZyvvUeTQvidCq8wzo6bYu6pmLeub6Qj3Dn6XR2utnxaeM/rF5X0bQHjc36d47EhnrIbTkPO3O/S6Neuainrm2ryff+QAAQA4yFQCAHGQqAAA5yFQAAHKQqQAA5CBTAQDIQaYCAJDji5m62ee9AACT6Pz91O5YyvrI7XUa/o/9/p5Nnw8GaWeh7zPd/nP6zMfAH9N9nRb9jXGajTvV84x/t4BnnOj4O9XzH/UR2cdr1Ce637uLeePvp2p9sg7pVx2tTM7G/dbrWoxro3myomuyOf7qjPr4tzLGibZvwLMym8fbsW53quGVkZrGJkaLv1C/vHD27xPOVPFF1vXBtV0snx2EgamnZuoDr19gcF5jiZn6hdM98tpX7OPMkp1qS6bewZ+p0do2u82VqdrrC3G6Ro1SDu+a8X3vcnLngxHauqpfq2lbaa/hjD2G+i8nqw51zUP9Vxddh6FxOtr34LzejXZtnOYe767n6PvUs7qviY89/aOu8xHrZU81fT4wHJW6g9GiXQ8jt/Wlz3uznmfXP/xGL5DB29w8PPU8B/6te3DdLlfSjutdeza6/Prmkyj5t96ez9TicccJWPreug0yNVfodmNsZRc8eq9cHZmaZTxTu2tydzET/hulrMdRZOpOBjO1eet3jr8N8Yg66vDxTM1ab9Fxut+QrcK/rqL3+VNZ50b/XKOfpbn+WTzVbKmfDcxbH0cc1gjUlPmgm7iuiqe0/p72U7/GNj7jxvFq7dpTWmdn/9VlrbfoOHad1/X3cheiwShdc5Drs/bek45G2sVHvvNhs3UJAJjQVzIVAIC7kakAAOQgUwEAyEGmAgCQg0wFACAHmQoAQA4yFQCAHK5MLT4nu+4nkROnvW4R3hL9DHvWZ+Sj7XvwHxT19KCeUdH53123x+oZ+B4l48+FpMx83cN/S3T9aP3vbt9A9EYm/kk9f6hnhy9f7wmZKub/70/n64Wiv33M187O+WgH0uxvdL5uYsxfG//auNw1E/Xla+wVziOink7UM+TL13vPd+gXgSH2Of+mqefYnKlWdC5iqVk7u0PflVNMyTN+94Ev6svX2CvIgFzUM+TL1/topp7VW7e6v72t+LhjMt2Zqs3fs/dmY70Lu/OuvnyNvYIMyEU9Q758vd/7PtXe1h4qOpnuTPXv1N7K00imin/6+694jb2CDMhFPUO+fL3HPktTv5MrQpFMNRqv9bGnUdd5ddHj3ekae4W2Gh+u8zaoZ8iXr/fRTP01/iLtehjXp+r+dd6I/bVpFHsM7Xd810V/Y5BofU6lzquLHq/nPN7RvrrmUjT639G+OurZx5j/K3V7rJ43fufDoksBAIA+d2Xq0q+wAADowHcTAgCQg0wFACAHmQoAQA4yFQCAHGQqAAA5yNQ2/utlAIBH4HdpavmzcQ+bOwF7tOtTfEAoXd+iqvvbg0T7r6KefHcltfo4+/ftfTZZR+Ss51ERn4ofx7zs9ePvrw3iWbcpB6JOOPpbb/WD5iaxCUXuBR3jR0cTz03iftFRz+ZJsf/0dJifdkMRH9vj2I3+Wq1Yxp+seoo9tXG03W2wPjXRY2muz1OpW98aHhf+t19n/hsvRuzXC9GFe1ROvcQd+9Uujwde73zErddYR/+1jCdcs5uzVuvW8Or5eopPbbM+a3df72LjSpmafi/reDFYB2fxoHu/WqO29NHBfq3j7G+vw1D/tYwnXPS1ptY/eh7n9Hw9taf2qGft7uv9/HuL7t5vt6cz9TTfwhpbGeOImxcPmvdQ/wXgOUb08dRTrL9zHXr6ryV64w6N1hynWefljNfTf+vP2nBd0eMKXb9v1XP596n3ZarxmqBjtvAgU6NGriB7tO5zMTiHd43Xs68m/vvqTshUYTYj97Lx96meHZGpM2suJ/u8kKmhF7V1PZsvSe0xt8/UaD21TQbfbKxbz0L0evesT619jUw9/iU2amtO63/+LeLxl2cm4obFyGI3bf7aOTMmv81yf0tz/RibhMbx91+Ctm6j9RT7G+NE67yKrHqeUh3scU49sNetpyZlfXra/fvNxXc+yDZbxwCAB5CpAADkIFMBAMhBpgIAkINMBQAgB5kKAEAOMhUAgBxfzFQ+JwMAuMMXfz+1/ix23zgwjH922xi57zPgg/t9iz3J+lnqaYvW89ceHV+rj9ZZ2+/8JRVlrROxv1G35vntOpqAz/1+6sjVAg/tQhL/tLuJg4fGydrvW4qbhfGs2EI9C9F6nsFU89THmMMqZWya4XrXsrw5+UFb/X5qMf7vcXP+Yk+MIFPTeeZMPf1Ccx7MVOdQduQv5O7r3e4Wbcy1/O/SGDv1BGrRbel1PBUyNZH4gk98bUo9Pfz1vD7rHNneyhmozflM7slMDZ2vDTP1NN/CGlsZ4/RNLzRnRN2Uqae+frLap+W51rLuWVntMwvduzruS82708h85pdy3UVv4Ea35lNZln+fOjgfZx9EOc/L4L3Yc05H2qdCpua6KVP9Y9rj73Rf6r7uOvIiWud02/5+aj0+mfqklEy1X8l+IVCNxdmRqXU9v5ap0XoaLWdkfUbfbHg2WYX/uvOvT08HZ53TbfX7qeL4v8bmETl3DZt2HrWT21w/ns5Z7RMy5jleT6P/riUdqaf4lNbZOcivQ2iqk+tbJKH1+XtW6xw9BVk2/86HX+1WXJcAgLVsmKnPvBgBAKCwYaYCAPAKMhUAgBxkKgAAOchUAABykKkAAOQgU9/Hf58MAHtY9fdT795L4jE2h7o+9cGPAPWtqMHPhnfvd37d9XTWrdjL4H7nd2s9jZsq9bT7Z7WnW/j3U0dGyOoTGsR5z9rsErLV696ziXjBaH9G+y+t77iOv1869mt0BkP3fud3dz21P6mn3T+r/Q5r/35qPZRnv869RGdy6qcw1PgbapsLydC91qMZGe2/qI7jii5aTzfqqXW2RyBTnf13zlTjz75rz3m0I/t1xlWo7tdYrWM79AKieIngn8OKyNRcz2Sq/Zp1m2Kez2aqcRPbpqRkqrTBWKae5ltJYyt7nOYII9eGczLaA2NAT/z757AiMjVXxz0rej2K65N6/jp039+M1yhfrqf2p1afaHu6Vd+nGlvdkan+c+/PVG1MMnV8QzJV/DO0rdZIpvZta49gj/zZenbcM0faU6z6+6np+7V30Z2pxiBk6ulYTs6rgkz9R3c9685aI5l6/XO8nna7/dRyovX0rKupAvWMZurxL7FRvPyM/uffIh5/OWcyvl/P+M7O15Hr4yo2cQ7VLMXqmufR6H99Vhsn2n910XoWW4njaCV17ndpD9TzVNJlv2KeY9d7c5Bo+x34zod37HepAADIVAAAcpCpAADkIFMBAMhBpgIAkINMBQAgB5kKAEAOMvV9fK4GAPbA76eqHX59Bo+3uXn9Wea+HS3N+Ky31h6qlf2x8Z1q7qmbp90enHo26xkdf3CctRj1dLYbIxv9H6gqv5/q6tA9q+Km45nJrleRRruhiI/rP527cDauTqubVsNobf2naQ8j9ey4EXWPs5DQ9T5Sz7durfx+qusw7f71sP5D0068Vp9dGQc7mKla/+3Le0em+nexH089m412n8Fb4kL817tnE0//x8q46u/SjOzXGVd2QNadiyz07FFrDO16D/4LyX5NJo5gv8bassjOuo3cd6indryhxWn/uWUxz2BwRutgnJQHSsrvp1rjj3T2HFpzqrteUTXPWevocLrXZHOchTRXmrZKRzK1e5z5+evZbLxpnOV0HGm0Dh3ZlGLV96nGVqtkquf+vuXlJOpbCWRqLbT+uzM19/Y3s+77CZlq6LjeyVT5cdHYnanp+9X2Ep1P8cA4kWTqVfSEan/aKyrl/dnMonXrqKdzw8CkJzZST3EpOuu2/U2g43qP1nONTD3+JTZqx6z1P/8W5fjLOZPx/Tb34uxWjFwfV7GJc6hbT/8MxFNpnN/meTd24RxnXR1166jnqd/gqKdRBKPIoXGWJpbUU2dtKG18Y9dJhyLjOx/esd+lAgAgUwEAyEGmAgCQg0wFACAHmQoAQA4yFQCAHGQqAAA5yNR58XkbAFhL/++n1s/eOc/XDB7XSGWuG25cYQDYRuB9anGLN559xioZ0zfPGSoMAAgJZ6p2Z3d+59a1pX5cNHrGMb7Lymj35JP9jtz/xrE4rt9W4uEXW2njePYLAHhYLFONG7odCYfyHreOSf+w4ky0/s3E0ohT0oa1R/AfuHZoof0CAB521/vUZhbWoxkji+8vjeDR+tsvCzzH5ZyzOCVjWGemhvYLAHhY5/+f2nw2K1MH36c6Zxvq2ZGpdc/ocXXsFwDwsJUy1Xif2vxH0dx/+w2NE/23XzIVABYV/iyN8ZT/31rFQNX6Xxu1XTTnY4zfPGRxHLsmxSDibIuhrpUxJuPcLwDgeXznwxSamQoAmB+Z+pro+2YAwOTIVAAAcpCpAADkIFMBAMhBpgIAkINMBQAgB5kKAECOWKa++MEPPnCyq5Hv4rijfXV9B1X318aJtq8utE6OSv2UtomzfQ8d6zN0/Rr1vLuk4fepu55jvKK+Tvr6Z7WvrriJOzcRb1gpj1d3x/r8cj3PrtcKR+uLbJuvXZ683sPvU8+/C6VuMdqvW4kv4q4P6v71ZJ553YH7kKn36bhthZ6Ktq9ocJ2I/b9czx//QTVfl4ijrZqpp5SF9Z9Fez1gMVTdzd5Q7I8lkKk3ybr7h9o79ju5kXWivQ1wdu7Y40LI1D9TEY+teNBsL541HhstvFVdHZl6h47DSXmfulkZz+xM1dq/Fqin+9COirj52plaBNhbmbr3PfE7yNR0fccynqk71fCn+xj99fxgoJ7DL/s2yVRPlP4ePJmpvE9dV3PpO68NMvUfzYuoIyBHHq8uuj49G365nj/iQdl38t0y9foO9aicl3IY7cVQdS4WI9T97U3SqoIHiSf3+pSzf1b70rSL5fqscxN7EKOYO9XzjK/P31PaONrgYvH3rqdYDXsrcRzP+I/Vk+98AAAgB5kKAEAOMhUAgBxkKgAAOchUAABykKkAAOQgUwEAyEGmAgCQY/S7CYFB0c9iez7rPdK+Cnv+0eMa/Kz9UfHvehJT1fM0vxthadGD6rt+68bHKjn63YTAiPo66euf1b4Ke/6H9D2gxlChG5P4J/W8dh6vp393a7n7ej/176vy73RQ4LsJxZbr7OvH1z7GU0V7XaCiJ7ZBpvbx3DJCB9W83Tf362mf1oT1XK6GHg9kanPk2TNVfFD/KfYpAtXYtm9ZY35kajfxNeiZmgHia1x7q+h+5/FKPTval/Z6pj5QzIRMPZU3kZ7Xetf2gj0O9kCm9um4jkIDnvp11xx/uWKe79XTuQ5XLKno3Ux9pow3ZuqvjxGKWo2MHdnzxFrI1D6e+YcOyp+p/q0W8lY9ydS+/h2Z+lgNE/4bJSMX7Uy9JjGZ+k32tVG/ViNT/9GXAcY7rY5M3eZN6vlePXddn5q7r3fPju4u5uhnaYpcdL5e+PWshyp2UXQ2FjEWVZ/04iln/6z2VdjzNw7ZGEcrkXOn58p3/1fqaex39fWpMY6rWc9o+1HlyAP1vP07H+wD2Gy5AAC+7MZMtV+M7Pf6CwDwcXw3IQAAOchUAABykKkAAOQgUwEAyEGmAgCQg0wFACCHK1O1z88WfW6cJvYV/WzVyGfAR/b7Fs8H2w/paxkG92LXJ9p/HjPXU5tSaNeTix6X1r/ZPrjfboHv+y3WR3vovZYC7lBfD339s9pno110nuPyH5R4A/L/6ekwiZnr6ZnP6p683t+qZ+w79LWp2y8i6s7iVp7XHddnPeP7C4FXkKl+xiTFp5wH5dm2GS3UM7StWE8y1d/fM87Cmepv+bU3Oxvhbfe3u2E2ZKpTKABCLyi116baLqL95zRVPY3G5mzX8lim2h0mytTfg8FMbTZ67okFcaht1uKuyFQPe3qhC83upmWn5/rS+k9onnra97FV6un3TKZGIzbXwpnanKrdDTMgU5v6AqC5odjNc81G+89mtnom7np+D2RqKF/u0POb5OLrJrul+5i1/ZKpe2i+3nS+IN01U0duFuIl6b9O+3ahNU5iwnp2t6/oyevdOBHvZ+rxr+uf9bNiRTo6G4M0hyo6i4seU9HO+6nfs/rWj7N9Ksb18uugbaKNZuxF3O94/3nMWc96k1Xq2cE4NKOxfkpsN87vYyVd7Dsf9lthAIBtLJCpG79kAwDsZIFMBQBgCWQqAAA5yFQAAHKQqQAA5CBTAQDIQaYCAJAj9ltvB9+lAJ/Bz27bI4fGef0z4A+jnrmiB6X1725ftJ7i/I9KdDS73Rj/sXoG3qcW8wv1x3doN1zxT7ubOHhonKz9roJ65hq56WU9du56KrnrROsmRmzifvskZKrn9Ugxjtb/+uzIUeF1ZOorqOd9ogflT4K6ffV6Ouc/8t4stO3UmXr933pyzZd1dv/llg40D2fqqb9WC/VfHZl6h+giMfo721evp2f+zoPSrtPm9Rvtn2U0U0/9LalWx1B/LOqmTD2V9ebMzu0zgEy9T/Sg6v7+oN2gntp9/trBOU7osafDrfV8+X2q8yks575MHRln+wwgU+8zmKn+QPVvuwr/ywt7W3+mOu8/d8jMVON9p3bt1eNjDymZqr3CrTt7rpm3Xrc+KVpPMtXWvHE731SMPBZ3vRD/myvxet85U39TES/U31N1ymr9r0+JjViRdiq182uc947Ozp3aTy0tVE+jf1b76oyDsuspNhrrc6d6Nifvr+epnwL71ESnlIXvfAAAIAeZCgBADjIVAIAcZCoAADnIVAAAcpCpAADkIFMBAMhBpgIAkCPh91M9H8jVPs6s7aj7eLCc6Gex7f7Rz3rvt9iy6pnVvjrWZ67t1+fob72JjfVjT7ffn/stI2jEBdDXX7uQQv1Xl1XPrPbVsT5zfWF9Zv4mebOD2F4f9mbLCIbEe5anQ7P/6r5wz3oS6zPXF9ZnLFOv6meN/nY37QG2xz0r1xfuWU9ifeb6wvrMeZ/qL422aI6KZ/ZYHfesXF+4Zz2J9ZnrC+szIVM982tmqt2CXXHPyvWFe9aTWJ+5vrA+b/xvlDwZLB7bZssIhuYtZvAexD2r+NNZn5nvWU9ifeb6wvoc/SzN8Vcx6bq9Hs3/FLYkrp/rU87+xlIM9V/dHfUcaV8d6zPX9uuT73wAACAHmQoAQA4yFQCAHGQqAAA5yFQAAHKQqQAA5CBTAQDIQa9+8CAAAAAfSURBVKYCAJCDTAUAIAeZCgBADjIVAIAcZCoAADn+H2aoVdQ7sFoYAAAAAElFTkSuQmCC这个是原包 6.3.1版本的 手算要达到同样吸收效率液气比摩尔比是0.485 模拟是0.44,当手算增加25%富裕值时为0.60。误差在30%左右求指教。手算公式是l/v=m*效率近似值。 m取0.75.
页:
[1]