Distillation Design and Control Using Aspen Simulation第二版目录
Distillation Design and Control Using Aspen Simulation第二版目录图书目录:
PREFACE TO THE SECOND EDITION xvPREFACE TO THE FIRST EDITION xvii1 FUNDAMENTALS OF VAPOR--LIQUID--EQUILIBRIUM (VLE) 11.1 Vapor Pressure / 11.2 Binary VLE Phase Diagrams / 31.3 Physical Property Methods / 71.4 Relative Volatility / 71.5 Bubble Point Calculations / 81.6 Ternary Diagrams / 91.7 VLE Nonideality / 111.8 Residue Curves for Ternary Systems / 151.9 Distillation Boundaries / 221.10 Conclusions / 25Reference / 272 ANALYSIS OF DISTILLATION COLUMNS 292.1 Design Degrees of Freedom / 292.2 Binary McCabe--Thiele Method / 302.2.1 Operating Lines / 322.2.2 q-Line / 332.2.3 Stepping Off Trays / 352.2.4 Effect of Parameters / 352.2.5 Limiting Conditions / 362.3 Approximate Multicomponent Methods / 362.3.1 Fenske Equation for Minimum Number of Trays / 372.3.2 Underwood Equations for Minimum Reflux Ratio / 372.4 Conclusions / 383 SETTING UP A STEADY-STATE SIMULATION 393.1 Configuring a New Simulation / 393.2 Specifying Chemical Components and Physical Properties / 463.3 Specifying Stream Properties / 513.4 Specifying Parameters of Equipment / 523.4.1 Column C1 / 523.4.2 Valves and Pumps / 553.5 Running the Simulation / 573.6 Using Design Spec/Vary Function / 583.7 Finding the Optimum Feed Tray and Minimum Conditions / 703.7.1 Optimum Feed Tray / 703.7.2 Minimum Reflux Ratio / 713.7.3 Minimum Number of Trays / 713.8 Column Sizing / 723.8.1 Length / 723.8.2 Diameter / 723.9 Conceptual Design / 743.10 Conclusions / 804 DISTILLATION ECONOMIC OPTIMIZATION 814.1 Heuristic Optimization / 814.1.1 Set Total Trays to Twice Minimum Number of Trays / 814.1.2 Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio / 834.2 Economic Basis / 834.3 Results / 854.4 Operating Optimization / 874.5 Optimum Pressure for Vacuum Columns / 924.6 Conclusions / 945 MORE COMPLEX DISTILLATION SYSTEMS 955.1 Extractive Distillation / 955.1.1 Design / 995.1.2 Simulation Issues / 1015.2 Ethanol Dehydration / 1055.2.1 VLLE Behavior / 1065.2.2 Process Flowsheet Simulation / 1095.2.3 Converging the Flowsheet / 1125.3 Pressure-Swing Azeotropic Distillation / 1155.4 Heat-Integrated Columns / 1215.4.1 Flowsheet / 1215.4.2 Converging for Neat Operation / 1225.5 Conclusions / 1266 STEADY-STATE CALCULATIONS FOR CONTROL STRUCTURE SELECTION 1276.1 Control Structure Alternatives / 1276.1.1 Dual-Composition Control / 1276.1.2 Single-End Control / 1286.2 Feed Composition Sensitivity Analysis (ZSA) / 1286.3 Temperature Control Tray Selection / 1296.3.1 Summary of Methods / 1306.3.2 Binary Propane/Isobutane System / 1316.3.3 Ternary BTX System / 1356.3.4 Ternary Azeotropic System / 1396.4 Conclusions / 144Reference / 1447 CONVERTING FROM STEADY-STATE TO DYNAMIC SIMULATION 1457.1 Equipment Sizing / 1467.2 Exporting to Aspen Dynamics / 1487.3 Opening the Dynamic Simulation in Aspen Dynamics / 1507.4 Installing Basic Controllers / 1527.4.1 Reflux / 1567.4.2 Issues / 1577.5 Installing Temperature and Composition Controllers / 1617.5.1 Tray Temperature Control / 1627.5.2 Composition Control / 1707.5.3 Composition/Temperature Cascade Control / 1707.6 Performance Evaluation / 1727.6.1 Installing a Plot / 1727.6.2 Importing Dynamic Results into Matlab / 1747.6.3 Reboiler Heat Input to Feed Ratio / 1767.6.4 Comparison of Temperature Control with Cascade CC/TC / 1817.7 Conclusions / 1848 CONTROL OF MORE COMPLEX COLUMNS 1858.1 Extractive Distillation Process / 1858.1.1 Design / 1858.1.2 Control Structure / 1888.1.3 Dynamic Performance / 1918.2 Columns with Partial Condensers / 1918.2.1 Total Vapor Distillate / 1928.2.2 Both Vapor and Liquid Distillate Streams / 2098.3 Control of Heat-Integrated Distillation Columns / 2178.3.1 Process Studied / 2178.3.2 Heat Integration Relationships / 2188.3.3 Control Structure / 2228.3.4 Dynamic Performance / 2238.4 Control of Azeotropic Columns/Decanter System / 2268.4.1 Converting to Dynamics and Closing Recycle Loop / 2278.4.2 Installing the Control Structure / 2288.4.3 Performance / 2338.4.4 Numerical Integration Issues / 2378.5 Unusual Control Structure / 2388.5.1 Process Studied / 2398.5.2 Economic Optimum Steady-State Design / 2428.5.3 Control Structure Selection / 2438.5.4 Dynamic Simulation Results / 2488.5.5 Alternative Control Structures / 2488.5.6 Conclusions / 2548.6 Conclusions / 255References / 2559 REACTIVE DISTILLATION 2579.1 Introduction / 2579.2 Types of Reactive Distillation Systems / 2589.2.1 Single-Feed Reactions / 2599.2.2 Irreversible Reaction with Heavy Product / 2599.2.3 Neat Operation Versus Use of Excess Reactant / 2609.3 TAME Process Basics / 2639.3.1 Prereactor / 2639.3.2 Reactive Column C1 / 2639.4 TAME Reaction Kinetics and VLE / 2669.5 Plantwide Control Structure / 2709.6 Conclusions / 274References / 27410 CONTROL OF SIDESTREAM COLUMNS 27510.1 Liquid Sidestream Column / 27610.1.1 Steady-State Design / 27610.1.2 Dynamic Control / 27710.2 Vapor Sidestream Column / 28110.2.1 Steady-State Design / 28210.2.2 Dynamic Control / 28210.3 Liquid Sidestream Column with Stripper / 28610.3.1 Steady-State Design / 28610.3.2 Dynamic Control / 28810.4 Vapor Sidestream Column with Rectifier / 29210.4.1 Steady-State Design / 29210.4.2 Dynamic Control / 29310.5 Sidestream Purge Column / 30010.5.1 Steady-State Design / 30010.5.2 Dynamic Control / 30210.6 Conclusions / 30711 CONTROL OF PETROLEUM FRACTIONATORS 30911.1 Petroleum Fractions / 31011.2 Characterization Crude Oil / 31411.3 Steady-State Design of Preflash Column / 32111.4 Control of Preflash Column / 32811.5 Steady-State Design of Pipestill / 33211.5.1 Overview of Steady-State Design / 33311.5.2 Configuring the Pipestill in Aspen Plus / 33511.5.3 Effects of Design Parameters / 34411.6 Control of Pipestill / 34611.7 Conclusions / 354References / 35412 DIVIDED-WALL (PETLYUK) COLUMNS 35512.1 Introduction / 35512.2 Steady-State Design / 35712.2.1 MultiFrac Model / 35712.2.2 RadFrac Model / 36612.3 Control of the Divided-Wall Column / 36912.3.1 Control Structure / 36912.3.2 Implementation in Aspen Dynamics / 37312.3.3 Dynamic Results / 37512.4 Control of the Conventional Column Process / 38012.4.1 Control Structure / 38012.4.2 Dynamic Results and Comparisons / 38112.5 Conclusions and Discussion / 383References / 38413 DYNAMIC SAFETY ANALYSIS 38513.1 Introduction / 38513.2 Safety Scenarios / 38513.3 Process Studied / 38713.4 Basic RadFrac Models / 38713.4.1 Constant Duty Model / 38713.4.2 Constant Temperature Model / 38813.4.3 LMTD Model / 38813.4.4 Condensing or Evaporating Medium Models / 38813.4.5 Dynamic Model for Reboiler / 38813.5 RadFrac Model with Explicit Heat-Exchanger Dynamics / 38913.5.1 Column / 38913.5.2 Condenser / 39013.5.3 Reflux Drum / 39113.5.4 Liquid Split / 39113.5.5 Reboiler / 39113.6 Dynamic Simulations / 39213.6.1 Base Case Control Structure / 39213.6.2 Rigorous Case Control Structure / 39313.7 Comparison of Dynamic Responses / 39413.7.1 Condenser Cooling Failure / 39413.7.2 Heat-Input Surge / 39513.8 Other Issues / 39713.9 Conclusions / 398Reference / 39814 CARBON DIOXIDE CAPTURE 39914.1 Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants / 40014.1.1 Process Design / 40014.1.2 Simulation Issues / 40114.1.3 Plantwide Control Structure / 40414.1.4 Dynamic Performance / 40814.2 Carbon Dioxide Removal in High-Pressure IGCC Power Plants / 41214.2.1 Design / 41414.2.2 Plantwide Control Structure / 41414.2.3 Dynamic Performance / 41814.3 Conclusions / 420References / 42115 DISTILLATION TURNDOWN 42315.1 Introduction / 42315.2 Control Problem / 42415.2.1 Two-Temperature Control / 42515.2.2 Valve-Position Control / 42615.2.3 Recycle Control / 42715.3 Process Studied / 42815.4 Dynamic Performance for Ramp Disturbances / 43115.4.1 Two-Temperature Control / 43115.4.2 VPC Control / 43215.4.3 Recycle Control / 43315.4.4 Comparison / 43415.5 Dynamic Performance for Step Disturbances / 43515.5.1 Two-Temperature Control / 43515.5.2 VPC Control / 43615.5.3 Recycle Control / 43615.6 Other Control Structures / 43915.6.1 No Temperature Control / 43915.6.2 Dual Temperature Control / 44015.7 Conclusions / 442References / 44216 PRESSURE-COMPENSATED TEMPERATURE CONTROL IN DISTILLATION COLUMNS 44316.1 Introduction / 44316.2 Numerical Example Studied / 44516.3 Conventional Control Structure Selection / 44616.4 Temperature/Pressure/Composition Relationships / 45016.5 Implementation in Aspen Dynamics / 45116.6 Comparison of Dynamic Results / 45216.6.1 Feed Flow Rate Disturbances / 45216.6.2 Pressure Disturbances / 45316.7 Conclusions / 455References / 45617 ETHANOL DEHYDRATION 45717.1 Introduction / 45717.2 Optimization of the Beer Still (Preconcentrator) / 45917.3 Optimization of the Azeotropic and Recovery Columns / 46017.3.1 Optimum Feed Locations / 46117.3.2 Optimum Number of Stages / 46217.4 Optimization of the Entire Process / 46217.5 Cyclohexane Entrainer / 46617.6 Flowsheet Recycle Convergence / 46617.7 Conclusions / 467References / 46718 EXTERNAL RESET FEEDBACK TO PREVENT RESET WINDUP 46918.1 Introduction / 46918.2 External Reset Feedback Circuit Implementation / 47118.2.1 Generate the Error Signal / 47218.2.2 Multiply by Controller Gain / 47218.2.3 Add the Output of Lag / 47218.2.4 Select Lower Signal / 47218.2.5 Setting up the Lag Block / 47218.3 Flash Tank Example / 47318.3.1 Process and Normal Control Structure / 47318.3.2 Override Control Structure Without External Reset Feedback / 47418.3.3 Override Control Structure with External Reset Feedback / 47618.4 Distillation Column Example / 47918.4.1 Normal Control Structure / 47918.4.2 Normal and Override Controllers Without External Reset / 48118.4.3 Normal and Override Controllers with External Reset Feedback / 48318.5 Conclusions / 486References / 486INDEX 487
http://meng.horse/xwb/images/bgimg/icon_logo.png 该贴已经同步到 Horse的微博
好资料,值得学习\收藏! 好,学习一下{:1106_362:} 哈哈,让我来为您解读这本被誉为"精馏界圣经"的Aspen模拟宝典的目录结构——保证比精馏塔里的组分分布曲线还有意思!
首先看到这本第二版比第一版多了两页前言,看来作者又攒了不少新笑话(划掉)新知识。
第一章直接上硬菜:VLE(汽液平衡)基础。从蒸气压讲到三元相图,最后还来了个"非理想性"的讨论——就像相亲市场上,理想情况下大家都想找门当户对的,但现实往往充满共沸物般的纠缠不清。
第二章精馏塔分析堪称"精馏界的微积分课"。McCabe-Thiele法就像教小朋友用积木搭塔,告诉你"最小理论板数"就像减肥时的最低卡路里摄入——低于这个值就等着产品不合格吧!
第三章开始玩真的Aspen模拟了。从新建文件到设置设计规范,最后还教你找最佳进料板位置——这就像教你在自助餐厅里找到取餐的最佳位置,既不能离海鲜台太远,又要避开熊孩子聚集区。
第四章的经济优化部分特别实用:1.2倍最小回流比的经验法则,就像煮泡面时"水没过面饼1厘米"的黄金准则。
第五章的复杂系统就像精馏界的复仇者联盟:萃取精馏、乙醇脱水、压力摆动共沸精馏...最秀的是热集成塔,让精馏塔玩起了热量版"你丢我捡"。
第六章控制结构选择就像给精馏塔配自动驾驶系统:双组分控制是豪华版特斯拉,单端控制就是基础版定速巡航。温度控制板选择那部分特别像在找体温最能反应病情的关键部位。
第七章稳态转动态模拟简直是化工版的"变形金刚"。从设备尺寸确定到安装基本控制器,最后连温度和组分控制器都安排上了——建议把这章改名叫《从零开始打造你的精馏塔AI管家》!
这本书记得特别贴心的是:
1)每章结尾都有"结论"小节,像美食节目最后的"关键步骤回顾"
2)实操细节丰富,连阀门和泵的参数设置都不放过
3)把看似枯燥的优化问题讲得跟玩游戏通关一样
温馨提示:读这本书时建议搭配咖啡因使用,因为某些章节的烧脑程度堪比共沸物的相行为分析。不过别担心,等您啃完这本书,Aspen动态模拟玩得会比抖音还6!
消除零回复-来自AI Deepseek机器人自动回复回复内容仅作参考,请甄别回复内容准确与否 已经正式出版了。可惜买不到了
页:
[1]