Distillation Design and Control Using Aspen Simulation第二版目录
图书目录:
PREFACE TO THE SECOND EDITION xv PREFACE TO THE FIRST EDITION xvii 1 FUNDAMENTALS OF VAPOR--LIQUID--EQUILIBRIUM (VLE) 1 1.1 Vapor Pressure / 1 1.2 Binary VLE Phase Diagrams / 3 1.3 Physical Property Methods / 7 1.4 Relative Volatility / 7 1.5 Bubble Point Calculations / 8 1.6 Ternary Diagrams / 9 1.7 VLE Nonideality / 11 1.8 Residue Curves for Ternary Systems / 15 1.9 Distillation Boundaries / 22 1.10 Conclusions / 25 Reference / 27 2 ANALYSIS OF DISTILLATION COLUMNS 29 2.1 Design Degrees of Freedom / 29 2.2 Binary McCabe--Thiele Method / 30 2.2.1 Operating Lines / 32 2.2.2 q-Line / 33 2.2.3 Stepping Off Trays / 35 2.2.4 Effect of Parameters / 35 2.2.5 Limiting Conditions / 36 2.3 Approximate Multicomponent Methods / 36 2.3.1 Fenske Equation for Minimum Number of Trays / 37 2.3.2 Underwood Equations for Minimum Reflux Ratio / 37 2.4 Conclusions / 38 3 SETTING UP A STEADY-STATE SIMULATION 39 3.1 Configuring a New Simulation / 39 3.2 Specifying Chemical Components and Physical Properties / 46 3.3 Specifying Stream Properties / 51 3.4 Specifying Parameters of Equipment / 52 3.4.1 Column C1 / 52 3.4.2 Valves and Pumps / 55 3.5 Running the Simulation / 57 3.6 Using Design Spec/Vary Function / 58 3.7 Finding the Optimum Feed Tray and Minimum Conditions / 70 3.7.1 Optimum Feed Tray / 70 3.7.2 Minimum Reflux Ratio / 71 3.7.3 Minimum Number of Trays / 71 3.8 Column Sizing / 72 3.8.1 Length / 72 3.8.2 Diameter / 72 3.9 Conceptual Design / 74 3.10 Conclusions / 80 4 DISTILLATION ECONOMIC OPTIMIZATION 81 4.1 Heuristic Optimization / 81 4.1.1 Set Total Trays to Twice Minimum Number of Trays / 81 4.1.2 Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio / 83 4.2 Economic Basis / 83 4.3 Results / 85 4.4 Operating Optimization / 87 4.5 Optimum Pressure for Vacuum Columns / 92 4.6 Conclusions / 94 5 MORE COMPLEX DISTILLATION SYSTEMS 95 5.1 Extractive Distillation / 95 5.1.1 Design / 99 5.1.2 Simulation Issues / 101 5.2 Ethanol Dehydration / 105 5.2.1 VLLE Behavior / 106 5.2.2 Process Flowsheet Simulation / 109 5.2.3 Converging the Flowsheet / 112 5.3 Pressure-Swing Azeotropic Distillation / 115 5.4 Heat-Integrated Columns / 121 5.4.1 Flowsheet / 121 5.4.2 Converging for Neat Operation / 122 5.5 Conclusions / 126 6 STEADY-STATE CALCULATIONS FOR CONTROL STRUCTURE SELECTION 127 6.1 Control Structure Alternatives / 127 6.1.1 Dual-Composition Control / 127 6.1.2 Single-End Control / 128 6.2 Feed Composition Sensitivity Analysis (ZSA) / 128 6.3 Temperature Control Tray Selection / 129 6.3.1 Summary of Methods / 130 6.3.2 Binary Propane/Isobutane System / 131 6.3.3 Ternary BTX System / 135 6.3.4 Ternary Azeotropic System / 139 6.4 Conclusions / 144 Reference / 144 7 CONVERTING FROM STEADY-STATE TO DYNAMIC SIMULATION 145 7.1 Equipment Sizing / 146 7.2 Exporting to Aspen Dynamics / 148 7.3 Opening the Dynamic Simulation in Aspen Dynamics / 150 7.4 Installing Basic Controllers / 152 7.4.1 Reflux / 156 7.4.2 Issues / 157 7.5 Installing Temperature and Composition Controllers / 161 7.5.1 Tray Temperature Control / 162 7.5.2 Composition Control / 170 7.5.3 Composition/Temperature Cascade Control / 170 7.6 Performance Evaluation / 172 7.6.1 Installing a Plot / 172 7.6.2 Importing Dynamic Results into Matlab / 174 7.6.3 Reboiler Heat Input to Feed Ratio / 176 7.6.4 Comparison of Temperature Control with Cascade CC/TC / 181 7.7 Conclusions / 184 8 CONTROL OF MORE COMPLEX COLUMNS 185 8.1 Extractive Distillation Process / 185 8.1.1 Design / 185 8.1.2 Control Structure / 188 8.1.3 Dynamic Performance / 191 8.2 Columns with Partial Condensers / 191 8.2.1 Total Vapor Distillate / 192 8.2.2 Both Vapor and Liquid Distillate Streams / 209 8.3 Control of Heat-Integrated Distillation Columns / 217 8.3.1 Process Studied / 217 8.3.2 Heat Integration Relationships / 218 8.3.3 Control Structure / 222 8.3.4 Dynamic Performance / 223 8.4 Control of Azeotropic Columns/Decanter System / 226 8.4.1 Converting to Dynamics and Closing Recycle Loop / 227 8.4.2 Installing the Control Structure / 228 8.4.3 Performance / 233 8.4.4 Numerical Integration Issues / 237 8.5 Unusual Control Structure / 238 8.5.1 Process Studied / 239 8.5.2 Economic Optimum Steady-State Design / 242 8.5.3 Control Structure Selection / 243 8.5.4 Dynamic Simulation Results / 248 8.5.5 Alternative Control Structures / 248 8.5.6 Conclusions / 254 8.6 Conclusions / 255 References / 255 9 REACTIVE DISTILLATION 257 9.1 Introduction / 257 9.2 Types of Reactive Distillation Systems / 258 9.2.1 Single-Feed Reactions / 259 9.2.2 Irreversible Reaction with Heavy Product / 259 9.2.3 Neat Operation Versus Use of Excess Reactant / 260 9.3 TAME Process Basics / 263 9.3.1 Prereactor / 263 9.3.2 Reactive Column C1 / 263 9.4 TAME Reaction Kinetics and VLE / 266 9.5 Plantwide Control Structure / 270 9.6 Conclusions / 274 References / 274 10 CONTROL OF SIDESTREAM COLUMNS 275 10.1 Liquid Sidestream Column / 276 10.1.1 Steady-State Design / 276 10.1.2 Dynamic Control / 277 10.2 Vapor Sidestream Column / 281 10.2.1 Steady-State Design / 282 10.2.2 Dynamic Control / 282 10.3 Liquid Sidestream Column with Stripper / 286 10.3.1 Steady-State Design / 286 10.3.2 Dynamic Control / 288 10.4 Vapor Sidestream Column with Rectifier / 292 10.4.1 Steady-State Design / 292 10.4.2 Dynamic Control / 293 10.5 Sidestream Purge Column / 300 10.5.1 Steady-State Design / 300 10.5.2 Dynamic Control / 302 10.6 Conclusions / 307 11 CONTROL OF PETROLEUM FRACTIONATORS 309 11.1 Petroleum Fractions / 310 11.2 Characterization Crude Oil / 314 11.3 Steady-State Design of Preflash Column / 321 11.4 Control of Preflash Column / 328 11.5 Steady-State Design of Pipestill / 332 11.5.1 Overview of Steady-State Design / 333 11.5.2 Configuring the Pipestill in Aspen Plus / 335 11.5.3 Effects of Design Parameters / 344 11.6 Control of Pipestill / 346 11.7 Conclusions / 354 References / 354 12 DIVIDED-WALL (PETLYUK) COLUMNS 355 12.1 Introduction / 355 12.2 Steady-State Design / 357 12.2.1 MultiFrac Model / 357 12.2.2 RadFrac Model / 366 12.3 Control of the Divided-Wall Column / 369 12.3.1 Control Structure / 369 12.3.2 Implementation in Aspen Dynamics / 373 12.3.3 Dynamic Results / 375 12.4 Control of the Conventional Column Process / 380 12.4.1 Control Structure / 380 12.4.2 Dynamic Results and Comparisons / 381 12.5 Conclusions and Discussion / 383 References / 384 13 DYNAMIC SAFETY ANALYSIS 385 13.1 Introduction / 385 13.2 Safety Scenarios / 385 13.3 Process Studied / 387 13.4 Basic RadFrac Models / 387 13.4.1 Constant Duty Model / 387 13.4.2 Constant Temperature Model / 388 13.4.3 LMTD Model / 388 13.4.4 Condensing or Evaporating Medium Models / 388 13.4.5 Dynamic Model for Reboiler / 388 13.5 RadFrac Model with Explicit Heat-Exchanger Dynamics / 389 13.5.1 Column / 389 13.5.2 Condenser / 390 13.5.3 Reflux Drum / 391 13.5.4 Liquid Split / 391 13.5.5 Reboiler / 391 13.6 Dynamic Simulations / 392 13.6.1 Base Case Control Structure / 392 13.6.2 Rigorous Case Control Structure / 393 13.7 Comparison of Dynamic Responses / 394 13.7.1 Condenser Cooling Failure / 394 13.7.2 Heat-Input Surge / 395 13.8 Other Issues / 397 13.9 Conclusions / 398 Reference / 398 14 CARBON DIOXIDE CAPTURE 399 14.1 Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants / 400 14.1.1 Process Design / 400 14.1.2 Simulation Issues / 401 14.1.3 Plantwide Control Structure / 404 14.1.4 Dynamic Performance / 408 14.2 Carbon Dioxide Removal in High-Pressure IGCC Power Plants / 412 14.2.1 Design / 414 14.2.2 Plantwide Control Structure / 414 14.2.3 Dynamic Performance / 418 14.3 Conclusions / 420 References / 421 15 DISTILLATION TURNDOWN 423 15.1 Introduction / 423 15.2 Control Problem / 424 15.2.1 Two-Temperature Control / 425 15.2.2 Valve-Position Control / 426 15.2.3 Recycle Control / 427 15.3 Process Studied / 428 15.4 Dynamic Performance for Ramp Disturbances / 431 15.4.1 Two-Temperature Control / 431 15.4.2 VPC Control / 432 15.4.3 Recycle Control / 433 15.4.4 Comparison / 434 15.5 Dynamic Performance for Step Disturbances / 435 15.5.1 Two-Temperature Control / 435 15.5.2 VPC Control / 436 15.5.3 Recycle Control / 436 15.6 Other Control Structures / 439 15.6.1 No Temperature Control / 439 15.6.2 Dual Temperature Control / 440 15.7 Conclusions / 442 References / 442 16 PRESSURE-COMPENSATED TEMPERATURE CONTROL IN DISTILLATION COLUMNS 443 16.1 Introduction / 443 16.2 Numerical Example Studied / 445 16.3 Conventional Control Structure Selection / 446 16.4 Temperature/Pressure/Composition Relationships / 450 16.5 Implementation in Aspen Dynamics / 451 16.6 Comparison of Dynamic Results / 452 16.6.1 Feed Flow Rate Disturbances / 452 16.6.2 Pressure Disturbances / 453 16.7 Conclusions / 455 References / 456 17 ETHANOL DEHYDRATION 457 17.1 Introduction / 457 17.2 Optimization of the Beer Still (Preconcentrator) / 459 17.3 Optimization of the Azeotropic and Recovery Columns / 460 17.3.1 Optimum Feed Locations / 461 17.3.2 Optimum Number of Stages / 462 17.4 Optimization of the Entire Process / 462 17.5 Cyclohexane Entrainer / 466 17.6 Flowsheet Recycle Convergence / 466 17.7 Conclusions / 467 References / 467 18 EXTERNAL RESET FEEDBACK TO PREVENT RESET WINDUP 469 18.1 Introduction / 469 18.2 External Reset Feedback Circuit Implementation / 471 18.2.1 Generate the Error Signal / 472 18.2.2 Multiply by Controller Gain / 472 18.2.3 Add the Output of Lag / 472 18.2.4 Select Lower Signal / 472 18.2.5 Setting up the Lag Block / 472 18.3 Flash Tank Example / 473 18.3.1 Process and Normal Control Structure / 473 18.3.2 Override Control Structure Without External Reset Feedback / 474 18.3.3 Override Control Structure with External Reset Feedback / 476 18.4 Distillation Column Example / 479 18.4.1 Normal Control Structure / 479 18.4.2 Normal and Override Controllers Without External Reset / 481 18.4.3 Normal and Override Controllers with External Reset Feedback / 483 18.5 Conclusions / 486 References / 486 INDEX 487
该贴已经同步到 Horse的微博 |