以梦为马,不负韶华

搜索
查看: 1468|回复: 0
收起左侧

从变换气中脱出二氧化碳

[复制链接]
发表于 1970-1-1 08:00:00 显示全部楼层 |阅读模式
      变压吸附脱碳技术是我公司根据我国小合成氨现状和碳酸氢氨过剩、液氨紧俏的趋势研制成功的。经变压吸附脱碳之后的净化气中二氧化碳含量可在0.2%以下,氢的回收率大于95%。它的工艺过程与前述的制氢工艺相类似,其中不同之处是:脱工艺中吸附剂的再生采用真空解吸方法来替代制氢工艺中的顺放-冲洗过程。图3-11为变压吸附脱碳工艺流程。        变换气在0.7~1.3MPa压力下,经过水分离器除去气体中带有的水液后,进入变压吸附系统。系统内每个吸附床依次循环执行下列步骤: 吸附       一均降       二均降       逆放      二均升      一均升      最终升压    原料中的水分和二氧化碳在吸附步骤被床内吸附剂吸附,从吸附床出口端输出净化的氢氮气。当二氧化碳的吸附前沿到达床内规定位置时,该吸附床吸附步骤结束,停止输入原料。接着开始降压解吸,先是吸附床顺向放压,压力逐级下降到~0.1MPa,排出的气体分别用于另外两个吸附床的升压,此时二氧化碳前沿已到达出口端。剩余的压力由逆向放压降到大气压,吸附床内一部分二氧化碳随气流排出。吸附床进一步再生采用抽真空的方法,即所谓的真空解吸。吸附床被抽到小于-0.08MPa的真空压力,吸附的二氧化碳几乎全部解吸并抽出。至此,吸附床再生完毕,开始进行再次吸附之前的升压步骤。升压过程是利用其它两个吸附床顺向放压排出的气体和吸附时输出的净化气逐级升到吸附压力的。      此法与目前其它脱碳方法相比,具有净化气中二氧化碳含量低、能耗小的特点,同时还能除去原料中硫化氢、部分甲烷和一氧化碳的优良性能。 有很多毛细孔构造,所以具有优异的吸附能力。因而它用途遍及水处理、脱色、气体吸附等各个方面。  沸石分子筛又称合成沸石或分子筛,其化学组成通式为: [M(Ⅰ)M(Ⅱ)]O.Al2O3.nSiO2.mH2O  式中M(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是钠和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和Al(HO)3等,它们与氢氧化钠水溶液反应制得的胶体物,经干燥后便成沸石,一般n=2~10,m=0~9。  沸石的特点是具有分子筛的作用,它有均匀的孔径,如3A0、4A0、5A0、10A0细孔。有4A0孔径的4A0沸石可吸附甲烷、乙烷,而不吸附三个碳以上的正烷烃。它已广泛用于气体吸附分离、气体和液体干燥以及正异烷烃的分离。  碳分子筛实际上也是一种活性炭,它与一般的碳质吸附剂不同之处,在于其微孔孔径均匀地分布在一狭窄的范围内,微孔孔径大小与被分离的气体分子直径相当,微孔的比表面积一般占碳分子筛所有表面积的90%以上。碳分子筛的孔结构主要分布形式为:大孔直径与碳粒的外表面相通,过渡孔从大孔分支出来,微孔又从过渡孔分支出来。在分离过程中,大孔主要起运输通道作用,微孔则起分子筛的作用。 以煤为原料制取碳分子筛的方法有炭化法、气体活化法、碳沉积法和浸渍法。其中炭化法最为简单,但要制取高质量的碳分子筛必须综合使用这几种方法。  碳分子筛在空气分离制取氮气领域已获得了成功,在其它气体分离方面也有广阔的前景。  6.        温度、压力对吸附过程的影响分别是什么? 在同一温度下,吸附质在吸附剂上的吸附量随吸附质的分压上升而增加;在同一吸附质分压下,吸附质在吸附剂上的吸附量随吸附温度上升而减少;因此降低吸附温度和升高吸附压力有利于气体组分的吸附。反之,提高温度和降低压力则气体的吸附量减少而解吸。 7.        什么叫变温吸附?什么叫变压吸附? 1.变温吸附法  在较低温度(常温或更低)下进行吸附,而升高温度将吸附的组分解吸出来。变温吸附是在两条不同温度的等温吸附线之间上下移动进行着吸附和解吸。由于常用吸附剂的热传导率比较低,加温和冷却的时间就比较长(往往需要几个小时),所以吸附床比较大,而且还要配 备相应的加热和冷却设施,能耗、投资都很高。  此外,温度大幅度周期性变化也会影响吸附剂的寿命。但变温吸附法可适用于许多场合,产品损失少,回收率高,所以目前仍为一种应用较广的方法。 2.变压吸附法  在加压下进行吸附,减压下进行解吸。由于循环周期短,吸附热来不及散失,可供解吸之用,所以吸附热和解吸热引起的吸附床温度变化一般不大,波动范围仅在几度,可近似看作等温过程。变压吸附工作状态仅仅是在一条等吸附线上变化。 常用减压吸附方法有以下几种,其目的都是为了降低吸附剂上被吸附组分的分压,使吸附剂得到再生。  8.        吸附剂的再生方法有几种?分别阐述? 为了能使吸附分离法经济有效的实现,除了吸附剂要有良好的吸附性能以外,吸附剂的再生方法具有关键意义。吸附剂再生深度决定产品的纯度,也影响吸附剂的吸附能力;吸附剂的再生时间决定了吸附循环周期的长短,从而也决定了吸附剂用量的多少。因此选择合适的再生方法,对吸附分离法的工业化起着重要的作用。  由描述吸附平衡的等温吸附线知道,在同一温度下,吸附质在吸附剂上的吸附量随吸附质的分压上升而增加;在同一吸附质分压下,吸附质在吸附剂上的吸附量随吸附温度上升而减少;也就是说加压降温有利于吸附质的吸附,降压加温有利于吸附质的解吸或吸附剂的再生。 于是按吸附剂的再生方法将吸附分离循环过程分成两类:变温吸附法和变压吸附法。图2-9表示了这两种方法的概念,图中横座标为吸附质的分压,纵座标为单位吸附剂的吸附量。上面一条是常温下的等温吸附线,下面一条是高温下的等温吸附线。     a. 降压:  吸附床在较高压力下吸附,然后降到较低压力,通常接近大气压,这时一部分吸附组分解吸出来。这个方法操作简单,单吸附组分的解吸不充分,吸附剂再生程度不高。 b. 抽真空:  吸附床降到大气压以后,为了进一步减少吸附组分的分压,可用抽真 空的方法来降低吸附床压力,以得到更好的再生效果,但此法增加了动力消耗。 c. 冲洗:  利用弱吸附组分或者其它适当的气体通过需再生的吸附床,被吸附组分的分压随冲洗气通过而下降。吸附剂的再生程度取决于冲洗气的用量和纯度。 d. 置换:  用一种吸附能力较强的气体把原先被吸附的组分从吸附剂上置换出来。这种方法常用于产品组分吸附能力较强而杂质组分较弱即从吸附相获得产品的场合。 在变压吸附过程中,采用哪种再生方法是根据被分离的气体混合各组分性质、产品要求、吸附剂的特性以及操作条件来选择,通常是由几种再生方法配合实施的。  应当注意的是,无论采用何种方法再生,再生结束时,吸附床内吸附质的残余量不会等于零,也就是说,床内吸附剂不可能彻底再生。这部分残余量也不是均匀分布再吸附床内各个部位。图2-10中曲线-2示出了这部分残余量在床内的分布情况。曲线-1就是前述的吸附负荷曲线。两根曲线分别与座标所形成的面积之差称为吸附床的有效吸附负荷。此质增大,有利于吸附操作。吸附工况确定后,有效吸附负荷就取决于吸附床的再生程度。由此,可看出再生在吸附操作中的重要性。
懒得打字嘛,点击右侧快捷回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|以梦为马,不负韶华

GMT+8, 2025-1-4 10:42

Powered by 以梦为马,不负韶华

© 2024-2099 Meng.Horse

快速回复 返回顶部 返回列表